SYNTHESIS, CHARACTERIZATION AND PROCESSING OF NEW MATERIALS FOR INNOVATIVE APPLICATIONS

Jan-Jun 2025, VOL. 2, ISSUE 1, pp. 38-40

https://doi.org/10.61577/scpnmia.2025.100004

ORIGINAL ARTICLE

Characterization of silver nanoparticles in bryophytes: insights from LC-MS and enzyme activity analysis

Ransing M.S., Chavan S. J., Mali. B.S.

P. G. Research Centre, Department of Botany, Tuljaram Chaturchand College of Arts Science and Commerce, Baramati, (Autonomous), Pune, Maharashtra, India.

ABSTRACT

The present investigation is focused on bryophytes association for the characterization of silver nanoparticles, LC-MS and enzyme activity of the liverwort Targionia hypophylla L. and two mosses as Trachypodopsis blanda (Mitt.) Fleisch. and Stereophyllum anceps (Bosch and Lac.) Broth from the Khambataki ghat Khandala and Wai, Satara of Maharashtra, India. Nanotechnology is useful to solving different environmental and health problems of human beings which is also useful for chemical fertilizers in agriculture aspects. Nanoparticles are useful in increasing the growth and production of crops. Synthesis of nanoparticles change in colour was observed from pale yellow to finally reddish brown. The peak is between 400nm to 440nm was acquired on a UV Visible Spectrophotometer which established silver nanoparticles. LC-MS is an analytical chemistry technique that combines liquid chromatography and mass spectroscopy which is useful for the analysis of metabolites like Phenol. In S. anceps phenol is present named carvacrol. In Targionia hypophylla is a tricyclic glycopeptide antibiotic named Vancomycin. Study of enzymes like Amylase and Nitrate reductase. Amylase is a group of enzymes that reduce starch into simple sugar. There are valuable industrial enzymes, a major resource of biologically active compounds in bryophytes. Another enzyme is nitrate reductase is the first enzyme of the nitrogen reduction pathway in plants. The production of ammonia plays a crucial role in nitrogen-fixing symbiosis, particularly in bryophytes.

KEY WORDS

Enzymes; Liverwort; Mosses; Silver nanoparticles- LC-MS

ARTICLE HISTORY

Received 25 May 2025; Revised 16 June 2025; Accepted 23 June 2025

Introduction

Nanotechnology is a field of nanoscience that deals with the size of nanoparticles approximately 1100 nm and play an important role in drug delivery. Nanotechnology is a green method and promotes synthesis of nanoparticles and their eco-friendly usage [1]. Use of green synthesis process is used as a medical field ant microbiological agent and anticancer Richard Feynman, a physicist and professor at the California Institute of Technology, was presented in his historical address as the guy who invented nanotechnology and wrote "There Is Plenty of Room at the Bottom" on December 29, 1959. Professor Norio Taniguchi of Tokyo Science University is credited with coining "nanotechnology" [2, 3]. Nanotechnology in the 21st century is the most important field in nanoscience and novel technologies. Currently, nanotechnology has achieved remarkable success at the research level. Nanoscience serves as the foundation of nanotechnology [4]. The biosynthesis of silver nanoparticles is a discovery of bryophytes [5].

Metal oxides such as nano titanium dioxide (nano- TiO_2) and zinc oxide (ZnO) are commonly used for nanomaterials in various applications. Bryophytes, especially mosses, are used to monitor water and air pollution [6]. However, the use of bryophytes for synthesizing nanoparticles is still limited. In the last decade, there has been a growing interest in using nanoparticles in bryophytes to study current phenomena [7].

Silver nanoparticles were produced using higher plants such as angiosperms, gymnosperms, and cryptogamic plants like Riccia and mosses. For this study, Stereophyllum anceps, Targionia hypophylla, and Trachypodopsis blanda were chosen to synthesize silver nanoparticles. Stereophyllum anceps belongs to the family Stereophyllum and is a major group of bryophyte mosses and liverworts [8]. It has a prostrate, irregularly branched main stem that is 8.0-10cm long and glossy in appearance, with crowded leaves. Targionia hypophylla is a genus of liverworts in the order Marchantiales. Its thallus is green with dichotomous branching of 5.10 nm, attached to soil with an entire margin, and purple air pores present. Trachypodopsis blanda, belonging to the family Meteoriaceae, has a shiny, dirty green, yellow or goldenbrown appearance, with mostly elongated secondary stems. The study of bryophytes was conducted using LC-MS [9, 10].

Highlights

- The article provides a comprehensive overview of the biologically active compounds present in bryophytes.
- Elucidate the therapeutic potential of bryophytes as antibiotics, antimicrobials, antioxidants, and anti-inflammatory agents.
- 1.The article presents a detailed account of the characterization of silver nanoparticles, LC-MS, and enzymes.

Materials and Method

Collection of plant material

Thallus or leafy parts of Stereophyllum anceps (Bosch and Lac.) Broth, Targionia hypophylla L., Trachypodopsis blanda (Mitt). Fleisch are collected and washed thoroughly under tap water and then with distilled water.

Preparation of plant extracts

The leaves (Thallus) under shade dried for 5 days were blended and produced into fine coarse powder.1gm of powder is mixed with 10 ml of 80% ethanol and boiled for 15 min. Then the extract is filtered through filter paper. Residue is removed and pure filtrate is obtained.

Preparation of plant extract for synthesis of silver nanoparticle

 $5\mu M$ aqueous solution of silver nitrate (AgNo $_3$) was prepared and used for the synthesis of silver nanoparticles. 10 ml of extract was mixed with 1ml (aq.) solution of $5\mu M$ silver nitrate for reduction into Ag * ions and incubated overnight at room temperature in dark. Analysis of UV-visible spectroscopy, the bio reduction of pure silver nanoparticles is monitored using UV-visible spectroscopy at regular intervals during reduction sample was taken and centrifuged at 12000 rpm. The supernatant was scanned by UV 300-400nm.

Preparation of methanolic extract for LC-MS

The thallus or leafy parts of the plant are collected, washed thoroughly under tap water, and then rinsed with distilled water. The dried plant material is powdered. The plant material is then extracted by soaking it in methanol at room temperature. A 1 mg/mL solution is prepared from the dry extract obtained after filtration and evaporation.

The enzyme activity of Bryophytes

Nitrate reductase

The in vivo activity of the enzyme is determined by the Jaworski method (1967).

Amylase

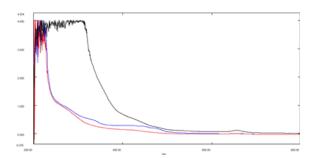

Peter and Bernfeld developed a method for determining amylase activity using a spectroscopic technique [11].

Figure 1. Before synthesis of AgNo $_3$.

Figure 2. After synthesis AgNo₃.

Figure 3. Graphic representation shown was Spectral peak at variable concentration Synthesis of silver nanoparticles in T1 (T. hypophylla), T2 (T. blanda), T3 (S. anceps).

==== Shimadzu LabSolutions Data Report ====

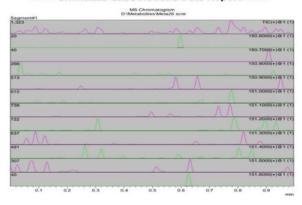
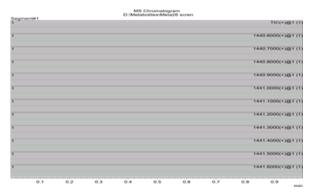



Figure 4. LC-MS chromatogram of methanolic extract Targionia hypophylla.

 $\begin{tabular}{ll} Figure 5. LC-MS Chromatogram of methanolic extract of Stereophyllum anceps. \end{tabular}$

Table 1. Enzyme composition and LC-MS components.

Name of species	Name of enzymes		LC-MS component's
	Nitrate Reductase	Amylase	
Targionia hypophylla	$\begin{array}{l} 0.0872~\Delta \\ 0.0872~\Delta \\ \text{O.D.hr}^{\text{l}}\text{fresh tissue} \end{array}$		Vancomycin
Stereophyllum anceps	0.352Δ O. D. hr1 fresh tissue	2.105mg maltose	Carvacrol

Result and Discussions

LC-MS (Liquid chromatography, Mass Spectroscopy), to trace the visible chemical compound Liquid chromatography, Mass spectroscopy analysis of methanolic extract was done. The compound obtained from LC-MS in S. anceps extract shows the presence of Carvacrol to detect the LC-MS spectrum [12]. Carvacrol is a phenolic monoterpene useful as an antimicrobial, antitumor, and antioxidant. Due to the presence of oil bodies, liverworts are characterized by the widest range of aromas among bryophytes. The sources of odors are volatile monoand sesquiterpenes and terpenoids [13]. The Tannin was higher in S. anceps [14].

Targionia hypophylla extract shows the presence of Vancomycin to detect the LC-MS spectrum. Vancomycin is the tricyclic glycopeptide antibiotic originally derived from the organism Streptococcus orientalis useful to treat and prevent various bacterial infections, for complicated skin infections [15]. The enzyme activity of T. hypophylla, S anceps is showing the nitrate reductase activity is 0.0872 Δ O.D.hr $^{-1}$ fresh tissue T. hypophylla The Amylase activity shows S. anceps the result as 2.105mg maltose 5 min incubation. Nanoparticles show a gradual decrease of 400-800 nm [16].

Conclusions

The LC-MS of Methanolic extract of S. anceps and Targionia hypophylla the presence of carvacrol and vancomycin These are new active compounds for possible application in antibacterial, antitumor, antioxidants, and anti-inflammatory and also useful as an antibiotic and to treatment of skin disease. Future studies on character elucidation of compounds will be remarkable insights for drug designing and benefit of mankind

The enzyme activity of Nitrate reductase in T. hypophylla is greater than, in S anceps The Amylase activity is higher in S. anceps. The nanoparticles show the species of in T1 (T. hypophylla), T2(Trachypodopsis blanda), T3(S. anceps) gradual decrease 400to 800nm.

Acknowledgements

The author is grateful to the principal prof. (Dr.) A. S. Jagtap Tuljaram Chaturchand College of Arts Science, and Commerce, Baramati, and Prof. (Dr.) B.S. Mali Head Post Graduate Research Centre, Department of Botany, Tuljaram Chaturchand College of Arts, Science and commerce, Baramati for providing necessary research facilities, encouragement, suggestions, and advice, throughout this research activity. Thankful to my guide Prof. (Dr.) S.J. Chavan. Thankful to Mahajyoti Fellowship Nagpur for providing financial assistance.

Disclosure Statement

No potential conflict of interest was reported by the author.

References

- Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45(7):1065-1071. https://doi.org/10.1016/j.procbio.2010.03.024
- Vimala A, Sathish SS, Thamizharasi T, Palani R, Vijayakanth P, Kavitha R. Moss (Bryophyte) Mediated Synthesis and Characterization of Silver Nanoparticles from Campylopus flexuosus (Hedw.) Bird. J Pharm Sci & Res. 2017;9(3):292-297.

- 3. Krywult M, Salachna A, Chmura D, Żarnowiec J. Nitrate reductase activity in chosen mosses: a case of study in skalny colliery waste tip. Chem Didact Ecol Metrol. 2013;18. https://doi.org/10.2478/cdem-2013-0018
- Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology. 2005;3:1-7.
 - https://doi.org/10.1186/1477-3155-3-8
- Leela A, Vivekanandan M. Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol. 2008;7(17):3162–3165.
- Jha AK, Prasad K. Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem. 2010;1(2):110-117. https://doi.org/10.1080/19430871003684572
- Srivastava AA, Kulkarni AP, Harpale PM, Zunjarrao RS. Plant mediated synthesis of silver nanoparticles using a bryophyte: Fissidens minutus and its anti-microbial activity. Int J Eng Sci Technol. 2011;3(12): 8342–8347.
- Asakawa Y. Biologically active substances obtained from bryophytes. J Hattori Bot Lab. 1981;50:123-142. https://doi.org/10.18968/jhbl.50.0_123
- Shete RS, Nikam V, Kanade MB, Chavan SJ. Applications of Nanotechnology in Bryophyte Research: A Review. MOENIA. 2024;11(3):120-129. https://doi.org/10.21276/JPPS.2021.1.1.1
- Suleiman AA, Lewis DH. Carbohydrate metabolism in the leafy liverwort, Plagiochila asplenioides (L.) Dum. var. major Nees. New Phytol. 1980;84(1):45-58. https://doi.org/10.1111/j.1469-8137.1980.tb00748.x
- 11. Bernfeld, P. Amylase α and β . Method Enzymol. 1955;1:149–158. http://dx.doi.org/10.1016/0076-6879(55)01021-5
- 12. Deising H. Nitrate reductase from Sphagnum species: isolation, in vitro assays and partial purification. Zeitschrift für Naturforschung C. 1987;42(5):653-656. https://doi.org/10.1515/znc-1987-0524
- Saritas Y, Sonwa MM, Iznaguen H, König WA, Muhle H, Mues R. Volatile constituents in mosses (Musci). Phytochemistry. 2001;57(3):443-457. https://doi.org/10.1016/S0031-9422(01)00069-3
- 14. DS W, Murumkar CV, Deokule SS, Chavan SJ. Secondary metabolite and enzyme activity on some moss species from Western Ghats, Maharashtra, India. 2017; 8(4): 716-719.
- Klavina L. A study on bryophyte chemical composition-search for new applications. Agronomy Research. 2015;13(4):969-978.
- Sabovljevic A, Sabovljevic M, Jockovic N. In vitro culture and secondary metabolite isolation in bryophytes. Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. 2009;547:117-128.
 - https://doi.org/10.1007/978-1-60327-287-2_10

